

Multi-Agent System and Traffic Simulation

Michal Radecký and Petr Gajdoš

Department of Computer Science

VŠB - Technical University of Ostrava

17. listopadu 15, Ostrava

Czech Republic

E-mail: Michal.Radecky@vsb.cz

Abstract

MAS development process has similar features to

standard Information Systems. However, there are special

features that have to be taken into account, in particular:

agent based architecture, agents’ autonomy and

communication, etc. According to mentioned points, MAS

development process should be extended or changed. The

process development can be handled and documented by

the standard UML tool. The output of such development

process is MAS with automatic or semi-automatic

generated intelligent agents that behave according to

defined MAS model. This paper describes a new

development and simulation tool called AgentStudio. The

ideas for intelligent agent generation are applied in the

area of traffic simulation.

1. Introduction

A Multi Agent System (MAS) attracts attention as an

approach to complexity systems in recent years. Many

MAS frameworks (e.g. JADE, ZEUS, SWARM, etc.)

were proposed to help developers to build complex

heterogeneous systems. Fundamental element of MAS is

represented by agent. Groups of co-operative intelligent

agents make MAS system that is flexible and robust at

once. MAS is dynamic - its components are not known in

advance and can be created or removed from the system.

In the case of MAS, we usually speak about distributed

systems. It means that agents can exist within different

software and hardware platforms and communicate

through a communication protocol. These features allow

us to use MAS for traffic simulation. This paper will

describe new software called AgentStudio that consists of

two main parts. The first one is represented by an

AgentStudio Designer. The second part covers a

simulation application designed purely for traffic

simulations now. It is called AgentStudio Simulator. Both

applications belong to a wider research (see the note

below) dealing with intelligent agents based on

Transparent Intensional Logic (TIL).

1.1. Our research background

First, it should be fine to briefly introduce our research

domain with emphasis on fundamental request and

possibilities. Our research is concerned with Intelligent

Agents and their development process. We would like to

define methodology to specify, model, implement,

simulation and deployment of the agents.

Nowadays, there are many approaches to develop

standard information systems from requirement

specification to deployment (UML, RUP, etc.). The

situation in the area of MAS is not so clear. Of course, it

is able to use the standard methodologies for MAS

develop support, but it is not ideal way to build complex

multi agent system. The specific features of these systems

(autonomy of element, communication among elements,

brain functions, etc.) require some special tools and

approaches. The request specification and modeling are

very important phases of system development. The Agent

UML and new features of UML 2.1 is able to cover this

phases with support of MAS specialty. But, the

AgentUML is a quite old approach that is no longer

supported. On the other hand, the UML standards are too

complicated for normal users and they bring many

functions and possibilities which are not necessary for

MAS developing.

So, we would like to introduce our research that is

focused on the simple, clear and semi-automatic MAS

development process. Our approach covers the modeling

phase where the results of this phase should be usable for

next phases of whole development process, especially

development process of Intelligent Agents. This modeling

approach extends the standard UML Activity Diagram by

elements that cover special features of Agents (as

autonomous software components). Based on our model,

we are able to build Intelligent Agents with capability of

behavior reconfiguration during their lives. Thanks to the

formal grounds and intention on agents construction

elements (messages, behaviors, etc.) we would like to

support the semi-automatic code generation as a part of

agents implementation phase. Our approach also relies on

“brain facilities” and complex logical potential.

From implementation point of view, there exist

several MAS frameworks at implementation level that

make environments for such systems. They are usually

based on standards that make it widely used without any

platform dependency. FIPA (The Foundation for

Intelligent Physical Agents) is an IEEE Computer Society

standards organization that promotes agent-based

technology and interoperability of its standards with other

technologies [2]. For our purpose, JADE (Java Agent

Development framework) has been chosen. It is a

software framework fully implemented in Java language;

however, it has been rewritten into Microsoft .NET J# and

C#, respectively. JADE [3,4] is a middle-ware that

simplifies the development of applications. Several

companies are already using it for very different

application sectors including a supply chain management,

rescue management, fleet management, auctions, tourism,

etc. This type of distributed applications enabled by

JADE, in particular, when applied to the mobile

environment, ignite a new trend of the software

development: the software is equipped with autonomy,

intelligence, and capability of collaboration and the

quality of the system is given by its capabilities of the

devices and by their mutual interaction and collaboration.

2. Intelligent agent and its development

As it was mentioned above, the agents make basic

elements of each multi-agent system. The added value of

our research also consists in an application of certain

intelligence features to the agents. Then we will speak of

intelligent agents and intelligent multi-agent systems.

Agents are taken as software components with internal

behaviors formed by processes in our approach. Internal

processes of agents, their structures, sequences, and

applications result from current situation and agents‟

states. Generally, a simple process agent is regarded as

reactive or proactive according to mentioned FIPA

standards. Nevertheless, process specification [5] enables

agent realization with respect to autonomous

determination and behavior changes. It can be said that

the internal behaviors of intelligent agents are defined by

clearly specified processes. These process specifications

and internal behavior result from modeling phase of MAS

development.

2.1. AgentStudio Designer

The AgentStudio Designer has been developed for

purposes of process flows specifications, modeling and

their transformation. It provides entire processes

specification thanks to Agent Behavior Diagrams (ABD).

ABD covers standard technique of UML Activity

Diagrams extended by new structural elements, executive

elements and rules [6]. This tool has several outputs

including documentation and graphic representation of

internal agents‟ behaviors (Traffic MAS architecture

chapter). An implementation of modeled agents based on

the semi-automatic source codes generation will be the

prime result of our research because it is not complete yet.

These source codes link automatic generated skeletons

(classes, methods, objects, architecture, etc.) and

particular implementation of atomic activities. Of course,

more complex codes have to be completed by

programmers and adapted for a given MAS framework

(e.g. JADE).

Figure 1: AgentStudio Designer schema

3. Behavior reconfiguration

The reconfiguration approach represents the way to

implement intelligent agents formed on internal

processes. [7] The idea of behavior reconfiguration comes

from the hypothesis that each process (reconfiguration

point), which is fired within agent‟s life, can be realized

by different ways and techniques. These realizations

depend upon knowledge, experiences, environment and

states of all agents. A reconfiguration algorithm is applied

in time of process firing. Each process requires some

input objects and can produce output objects. The same

holds for process realizations. Each process is described

by a set of realizations. Each realization is described by

single ABD during the specification phase. ABDs can be

stored within agent internal knowledge base or global

MAS repository. Moreover, the agents are able to extend

their own sets of realizations thanks to communication

and cooperation with other agents and/or platform

facilities. This feature enables agents to learn from others

and share knowledge bases. Process realizations could be

deliberated also in real-time without previous ABD

specification but this is not an aim of our research.

Figure 2: Reconfiguration process

The Figure 2 shows the basic scheme of mentioned

reconfiguration method. At the beginning, the set of all

processes and their realizations is defined. Next, the

selection phase is initiated. Depicted selection consists of

two steps. The first one represents a simple selection of

applicable realizations, based on input objects

occurrences. The second one chooses the most suitable

realization according to input objects properties, scores,

etc. Methods of multicriterial analysis or logical tools can

be used during the selection phase.

4. Traffic simulation

The relationship between our MAS model and

subsequent simulation is described in this part. We should

point out that this relationship is not fully implemented

yet. Currently, there doesn‟t exist program providing data

transformation from AgentStudio Designer to

AgentStudio Simulator. The work is still in progress.

Figure 3: AgentStudio schema

4.1. Reasons for traffic simulations

Proposed approaches and methods have been proven

in the area of traffic management. Now, the reasons

leading us to MAS application are explained. First,

computational simulations are becoming increasingly

important because in some cases it is the only way that

processes can be studied and interpreted. These

simulations may require very large computational power

and the calculations have to be distributed on several

computers. The MAS technology supports such kind of

computation because of its independence from platforms,

operation systems, etc. However, we do not want to

simulate all possible situations within particular traffic

system. We take into account just a set of chosen traffic

situations to demonstrate the power of MAS technology,

logic and AgentStudio. Next, several commercial systems

pick up actual traffic data, create digital models of traffic

infrastructure (roads, crossroads, traffic signs, etc.) and

provide such data sets to use them within other projects.

Then it is quite easy to use provided data in simplified

form for AgentStudio Simulator and test agents‟

behaviors on real data. Logic and intelligent decision-

making process play an important part in our project. Also

this point is inherent with traffic simulations, e.g. if a

traffic light is red, a car should stop before a crossroad. In

other words, the car has to change its behavior. Most of

such rules are well described in Highway Code and can be

rewritten into Prolog and/or TIL (Transparent Intensional

Logic) formulas. The fourth reason consists in agent

behavior description based on UML modeling which is

covered by ABD. The last reason is an eye appealing way

of presentation of simulation results. Visualization tool

makes one part of AgentStudio Simulator and helps us to

see what the agents really do and how they behave

depending on simulated environment.

4.2. Target area description

Traffic simulations try to reflect real situations taking

place on roads. Nowadays, AgentStudio Simulator allows

us to design and edit simplified infrastructure to test

agents‟ behaviors. In the future, it will also enable to

import real GIS data. These are important situations

which we focused on:

- Cars overtake each other and they will recognize

traffic obstacles.

- They safety pass through crossroads.

- They keep safety distance from other agents

(cars).

- They keep basic rules defined in Highway Code.

Previously mentioned situations make basic elements

within agent behavior design process. Particular situation

is solved during agents‟ life with respect to its ability to

make a decision. Finally, MAS development and

simulation can be divided into steps mentioned below.

4.3. Process of modeling and simulating in the

AgentStudio

A complete scenario of AgentStudio utilization can be

divided into several parts:

1. Real world requirement analysis → identification of

the agents and their goals, objects, processes, etc.

2. Agents‟ behaviors modeling in AgentStudio Designer

→ MAS model based on ABDs.

3. Source code generation and its completion (Complex

behaviors have to be modified by programmers.) →

source code in specific programming language and

selected MAS framework.

4. MAS environment specification → traffic

infrastructure description based on retrieved real data.

5. Initial phase of simulation process → starting MAS

platforms, encapsulation of traffic information into

platform data structures.

6. Simulation, visualization and management.

The described process and its steps can be applied to

various implementation areas. Generally, final simulation

and implementation respect selected MAS framework and

system architecture. Proposed architecture convenient to

traffic simulation is described below.

4.4. Traffic MAS architecture

The next figure illustrates our MAS architecture.

Figure 4: MAS architecture for traffic simulation

Platforms 1 and 3 represent two parts of the real world,

e.g. a town district (P1) with a separated parking lot (P3).

The data of such platform consists of traffic infrastructure

map of a given area. Next, it has a description of traffic

elements located on traffic infrastructure. Finally, the data

holds mobile agents information obtained from proxy

agents. Generally, particular platform data reflects the

state of the real world. Second parts of these platforms

make environments for system agents which are

responsible for the communication with other agents

(Proxy agents), map services (MapDispatcher agent) and

for agent registration (WorldRegister agent). The platform

2 consists of mobile agents that represent cars moving in

the real world. The platform 2 can be distributed on many

hardware nodes according to FIPA standard.

The main relationships between platforms/agents are

described in the following points (see the Figure 4).

1. A single car (Agent_CarA) registers itself into a

given part of the world (P1). It is done through

the communication with WorldRegister agent.

This agent also creates a proxy agent for

Agent_CarA (st. like proxy in Object Oriented

Programming).

2. This connection provides an access to map

services (road finding, infrastructure description,

etc.) ensured by MapDispatcher agent (see the

Yellow Pages in [2]).

3. This communication realizes a synchronization

of mobile agent data. It runs during whole car

agent‟s life.

4. Mobile agents can communicate between each

other to negotiate emergency situations and/or to

get some new knowledge, addition information

on surrounding world, etc.

5. Car as an intelligent agent

Previously mentioned approach of intelligent behavior

is applied within every car agent. Moreover, a Car agent

needs certain form of inner structure for intelligent

determination. The basic features of an intelligent mobile

agent (Car) are perception, decision making and acting.

5.1. Perception

It is a natural feature of each live organism and the

same holds for the intelligent agent. In the case of agent,

the perceptions are based on technical facilities.

Information sources are:

- sensors

- GIS data

- communication with other agents

Implementation and usage of a Car agent in the real

operation need the hardware sensors, e.g. digital cameras,

ultrasonic detectors, GPS, etc. Nevertheless, this research

deals with software simulated perceptions. According to

the mentioned architecture, the Proxy agents make such

kind of sensors. These agents have a full access to

platform information and can simulate the sight and

location of substituted agents. Provided data is sent by

Proxy agent to its Car agent via ACL message.

Spatial data represents the most important information

source for mobile agent. For the simulation, it is better to

appear from real data on traffic infrastructure which can

be obtained from some Geographical Information

Systems (GIS). The mission of GIS is not to provide

detailed description of infrastructure. It consists in map

services ensuring road finding, traffic signs positioning,

traffic element description, etc.

The last information source appears from agents‟

communication. This way of information retrieval meets

the principles of MAS. Agents can interchange some

knowledge (traffic jam, accident location, etc.) or use

services (parking payment, call for help, etc.).

5.2. Decision making

A rational agent in a multi-agent world is able to

reason about the world (what holds true and what does

not), about its own cognitive state, and about that of other

agents [8]. A theory formalizing reasoning of autonomous

intelligent agents has thus to be able to „talk about‟ and

quantify over the objects of agents‟ attitudes, iterate

attitudes of distinct agents, express self-referential

statements and respect different inferential abilities of

agents. Since agents have to communicate, react to

particular events in the outer world, learn by experience

and be less or more intelligent, a powerful logical tool is

of a critical importance.

To this end we make use of Prolog and Transparent

Intensional Logic [9, 10]. The logic tool is represented by

an agent brain; currently, an external software component

used as a remote service. The communication with the

brain is based on request/response approach, where the

request has to contain relevant information on agent state,

intention, it‟s seeing, nearest surround and other

knowledge. The response of this service should determine

next step of agent life process with respect to request

content. Next, the intelligent decision making is used

within reconfiguration process, which was already

mentioned.

5.3. Acting

The last one is a natural consequence of two previous

features. Acting means the concrete behavior firing which

leads to pass agent‟s objectives. At the end of this, agent‟s

state, as well as the state of whole MAS, has to be

updated. Then, the process compound of perception,

decision making, and acting is repeated.

6. Illustrative example

Figure 5: AgentStudio Simulator snapshot –
illustrative traffic situation

The Figure 5 illustrates a common traffic situation.

There are two cars on a simple road. They are on different

lanes, however they have to solve conflict situation

because of water puddle on the road. The CarB can

continue to drive but the CarA has to change its behavior.

The solution of the behavior change is described below.

6.1. Perception of the CarA

The agent sees everything in the circle bounded by the

orange color. This perception is realized by environment,

particularly by Proxy Agent of a given Car Agent. This is

perceptions of CarA agent based on the situation depicted

on figure 5:

Infrastructure

- road element composed of two lanes

Objects

- CarB driving on the contra-flow lane in distance

150 m with the speed 38 km/h.

- water puddle placed on the current lane in

distance 105 m.

Such information is described by XML in

AgentStudio Simulator and it is used within decision

making process.

6.2. Car Agent skills – processes and realizations

Each Car agent has a set of processes which form its

internal behaviors. Every process can be implemented by

several ways – realizations. The following list illustrates

the current state of car agents‟ internal repositories.

Process: GO -> realizations: 1

Process: SLOW_DOWN -> realizations: 1

Process: SPEED_UP -> realizations: 1

Process: CHANGE_LANE -> realizations: 2 (based

on direction of change – left, right)

6.3. Decision making of the CarA

Agent CarA holds some information on its state, e.g.

current speed, orientation, intention, physical properties

(car weight, maximal speed and acceleration). Such facts

together with perceptions (and/or traffic rules) form input

data for logic resulting. In this case, the logic consequent

of given premises is a decision to SLOW_DOWN

because there is no possibility to safety drive around the

obstacle. The appropriate process realization

(SLOW_DOWN_1) is fired. In the case when there is not

car in other lane (CarB), the decision result should be the

process CHANGE_LANE. The selection of realization to

fire is based on reconfiguration algorithm

(CHANGE_LANE_left in this special case).

6.4. Acting of the CarA

The reconfiguration principles have been applied. The

CarA changes its behavior according to SLOW_DOWN

process specified by ABD. The CarA decreases its speed

and tries to solve the situation again with new values and

conditions.

7. Conclusion & Future work

Figure 6: AgentStudio Designer screenshot

In this paper we briefly described our research on

Multi-Agent Systems and its applications. The work is

still in progress and there is a lot to be done. More

attention has to be paid to imperfect and vague

information. To this end we use Prolog. The inference

machine based on TIL has to be precisely specified and

implemented. In the area of process management we are

going to develop behavior-model extensions in order to

provide message specifications and interfaces,

automatically generate new generations of agents that

learn by experience, and to distribute behavior schemes

and knowledge among the whole system. Next, the source

code generator should be improved. Our current

application

Figure 7: AgentStudio Simulator screenshot

is a model of a traffic system. The main work will consist

in next development and extension of AgentStudio.

Acknowledgement
This research has been supported by the program

"Information Society" of the Czech Academy of Sciences,

project No. 1ET101940420 "Logic and Artificial

Intelligence for multi-agent systems"

8. References

[1] Namee, B. M. A Proposal for an Agent Architecture

for Proactive Persistent Non Player Characters. 2001.

[2] Odell, J. The Foundation for Intelligent Physical

Agents. http://www.fipa.org. [Online] 2006.

[3] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa.

JADE - A White Paper. 1999.

[4] Bellifemine, Fabio. Java Agent Development

Framework Documentation. http://jade.tilab.com/. 2005.

[5] Radecký, Michal and Vondrák, Ivo. Agents and Their

Behavior's Reconfiguration. ECEC 2006. Athens :

EUROSIS, 2006. ISBN 90-77381-24-4.

[6] Radecký, Michal. Intelligent Selection of Realizations.

ECMS 2006. Bonn : s.n., 2006. ISBN 0-9553018-1-5.

[7] Radecký, Michal and Gajdoš, Petr. Process and Logic

Approaches in the Inelligent Agents Behavior.

Information Modelling and Knowledge Bases XVIII.

Amsterdam : IOS Press Amsterdam, 2007. ISBN 978-1-

58603-710-9.

[8] Schelfthout, K. and Holvoet, T. An Environment for

Situated Multi Agent Systems. International Conference

on Autonomous Agents and Multi Agent Systems, AAMAS.

Washington DC : IEEE Computer Society, 2004.

[9] Tichý, Pavel. The Foundations of Frege's Logic. De

Gruyter. 1988.

[10] Duží, Marie. Concepts, Language and Ontologies

(from the logical point of view). Information Modelling

and Knowledge Bases XV. Amsterdam : IOS Press

Amsterdam, 2004.

