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Typically, the past (and the present) is settled, but the 
future is not (it is open)

  Historical modalities:
It is (already) settled that ...
It is (still) possible that ...

Aristotle’s tomorrow’s sea battle
Diodoros Chronos’s Master Argument
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Branching time (Prior, Kripke, 
Thomason)

Model BT: time  + possibilities

Non-empty partially ordered set, with no backward branching.
Histories identified with maximal chains in the base set.
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Semantical model
h1 h2 h3

A

BT model + interpretation function I assigning atomic formulas 
to events

Novelty of Prior/Thomason : sentences are true/false at 
<event, history> pairs.

  = here and now
       is merry
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e/h |= A iff e ∈ I(A) for A an atomic formula;

e/h |= Will : A iff ∃e′ > e : e′/h |= A;
e/h |= Was : A iff ∃e′ < e : e′/h |= A,
where e/h is a pair 〈e, h〉 such that e ∈ h
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e/h |= Poss : A iff ∃h′ : e ∈ h′ ∧ e/h′ |= A;

e/h |= Sett : A iff ∀h′ : e ∈ h′ → e/h′ |= A;



Branching space-times - Belnap 1992

possible histories have spatial and relativistic aspects



Branching space-times - Belnap 1992

possible histories have spatial and relativistic aspects

What should replace the BT notion of history as maximal chain? 



Branching space-times - Belnap 1992

possible histories have spatial and relativistic aspects

What should replace the BT notion of history as maximal chain? 

Minkowski space-time: the relation “x lies in the future light cone of 
y” is a partial order
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spatiotemporal int. 

     modal int.

spatiotemporal int. 
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History

A subset A of W is upward directed if every two elements 
of A have an upper bound in A 

A is a maximal upward directed subset of W if every 
proper superset of A is not upward directed.

History of W is a maximal upward directed subset of W



History is intended to be like Minkowski space-time



Typically, there will be many histories; and every two 
histories split (i.e., have a non-empty intersection)



Typically, there will be many histories; and every two 
histories split (i.e., have a non-empty intersection)

Histories h1 and h2 divide at e ∈ W if (1) e ∈ h1 ∩ h2 and
(2) ¬∃e′(e < e′ ∧ e′ ∈ h1 ∩ h2). In symbols: h1 ⊥e h2.



Typically, there will be many histories; and every two 
histories split (i.e., have a non-empty intersection)

That any two histories divide at some e follows from 
Prior Choice Principle:

Histories h1 and h2 divide at e ∈ W if (1) e ∈ h1 ∩ h2 and
(2) ¬∃e′(e < e′ ∧ e′ ∈ h1 ∩ h2). In symbols: h1 ⊥e h2.



Typically, there will be many histories; and every two 
histories split (i.e., have a non-empty intersection)

That any two histories divide at some e follows from 
Prior Choice Principle:

Let O be a chain in W such that O ⊂ h1, but O ∩ h2 = ∅
for some histories h1, h2.
Then there is an e such that e <∀ O and h1 ⊥e h2.

Histories h1 and h2 divide at e ∈ W if (1) e ∈ h1 ∩ h2 and
(2) ¬∃e′(e < e′ ∧ e′ ∈ h1 ∩ h2). In symbols: h1 ⊥e h2.
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How histories split? Problem of the wings
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Assume two histories slit at a single event. 
By PCP, wings are in.



Chanciness vs. indeterminism without choice

upper bounded chain may have no supremum
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“Topology of the future light cones”



Postulates:
upper bounded chain has a supremum in every history it 
is a subset of

lower bounded chain has an infimum 



〈W, !〉 is a model of BST if W is a nonempty set and !
is a partial ordering on W and the following postulates
are satisfied:



1. The ordering ! is dense.

2. W has no maximal elements with respect to !.

3. Every lower bounded chain in W has an infimum in W .

4. Every upper bounded chain in W has a supremum in
every history that contains it.

5. Prior choice principle (PCP): For any lower bounded
chain O ∈ h1 − h2 there exists a point e ∈ W such
that e is maximal in h1 ∩ h2 and ∀e′ ∈ O e < e

′
.

〈W, !〉 is a model of BST if W is a nonempty set and !
is a partial ordering on W and the following postulates
are satisfied:



Important consequence:

Undividedness of histories at an event is an equivalence relation

h1 ≡e h2 iff (1) e ∈ h1 ∩ h2 and (2) ∃e′ : (e < e′ ∧ e′ ∈ h1 ∩ h2)

It is an equivalence r. on He := {h ∈ Hist | e ∈ h}

So it induces partition Πe of He.

If h1, h2 ∈ H ∈ Πe, then h1 ≡e h2.

Elements of Πe are called “possibilities open at e”.
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But smooth combinatorics can fail (EPR)

Combinatorically allowable histories are not possible.

Πe = {{L+}, {R+}}

Πf = {{L+}, {R+}}



e1 and e2 are space-like related (SLR) if they are incompa-
rable, yet there is a history to which they both belong.

Non-locality (or modal funny business)

H ∈ Πe and G ∈ Πf constitute a case of modal funny
business iff

(1) e SLR f , and
(2) H ∩G = ∅.
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More applications of BST

1. Analysis of Bell’s theorems
2. Analysis of causation
3. A theory of single case objective probabilities (chances)
4. Analysis of flow of time (see tomorrow)
5. A theory of agency: our actions and their consequences
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